상세 컨텐츠

본문 제목

Wraparound’ implants represent new approach to treating spinal cord injuries

카테고리 없음

by Earn On 2024. 5. 20. 15:44

본문

A tiny, flexible electronic device that wraps around the spinal cord could represent a new approach to the treatment of spinal injuries, which can cause profound disability and paralysis.

A model of a human spinal column. Image credit: Chuttersnap via Unsplash, free license

A team of engineers, neuroscientists, and surgeons from the University of Cambridge developed the devices and used them to record nerve signals traveling back and forth between the brain and the spinal cord. Unlike current approaches, the Cambridge devices can record 360-degree information, giving a complete picture of spinal cord activity.

Tests in live animal and human cadaver models showed the devices could also stimulate limb movement and bypass complete spinal cord injuries where communication between the brain and spinal cord had been completely interrupted.

Most current approaches to treating spinal injuries involve both piercing the spinal cord with electrodes and placing implants in the brain, which are both high-risk surgeries. The Cambridge-developed devices could lead to treatments for spinal injuries without the need for brain surgery, which would be far safer for patients.

While such treatments are still at least several years away, the researchers say the devices could be useful in the near-term for monitoring spinal cord activity during surgery. Better understanding of the spinal cord, which is difficult to study, could lead to improved treatments for a range of conditions, including chronic pain, inflammation and hypertension. The results are reported in the journal Science Advances.

“The spinal cord is like a highway, carrying information in the form of nerve impulses to and from the brain,” said Professor George Malliaras from the Department of Engineering, who co-led the research. “Damage to the spinal cord causes that traffic to be interrupted, resulting in profound disability, including irreversible loss of sensory and motor functions.”

The ability to monitor signals going to and from the spinal cord could dramatically aid in the development of treatments for spinal injuries, and could also be useful in the nearer term for better monitoring of the spinal cord during surgery.

“Most technologies for monitoring or stimulating the spinal cord only interact with motor neurons along the back, or dorsal, part of the spinal cord,” said Dr Damiano Barone from the Department of Clinical Neurosciences, who co-led the research. “These approaches can only reach between 20 and 30 percent of the spine, so you’re getting an incomplete picture.”

By taking their inspiration from microelectronics, the researchers developed a way to gain information from the whole spine, by wrapping very thin, high-resolution implants around the spinal cord’s circumference. This is the first time that safe 360-degree recording of the spinal cord has been possible – earlier approaches for 360-degree monitoring use electrodes that pierce the spine, which can cause spinal injury.

The Cambridge-developed biocompatible